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0. Summary

We will find the probability distribution of losses from reflections

at discontinuities in a transmission line, on the assumption that the

reflection coefficients at the discontinuities have random phase, and, in

addition, random magnitudes associated with manufacturing uncertainties

(tolerances).

1. Introduction

Suppose a transmission line has n discontinuities with associated

voltage standing wave ratios (VSWR's) rI <! r2 < r3 < ... < r n. A

common procedure for describing the cumulative effect of reflections at

the discontinuities is to say that the resulting VSWR will be

r when the mismatches add in the worst phase, or rn/rlr2 ... rn-1

when they combine in the best phase. (See, for example, [4), p.35, 611).

This gives a rather large interval which is of limited use to designers.

Can a more precise description of the overall VSWR be given in probability

terms? In 13), Mullen and Pritchard give such a description, based on

the approximation that reflection coefficients are additive. We will

develop a procedure based on combining the reflection coefficients in a

more precise way.

2. Combining Reflection Coefficients

Let y1, Y21 "'.' Yn be the reflection coefficients associated with n

discontinuities in a transmission line. We are interested in the overall

reflection coefficient y. We assume that y 1, .. , Yn can not be
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given exactly, and hence that each is a random complex number with a

distribution that will be specified. We want the probability

distribution of y, and in particular, that of jly, which will give

an indication of the total reflection losses in the system.

Now a rough approximation to Y is - Y1 +...+ Yn' as was

considered in [ 3 ]. We will use a more precise relation between y

and the yk'8 and find the probability distribution of y from that of

the Yk'S. The relation we want is

SYL Y2 Yn
1-y - Y 1  -Y2 Yn

This is equivalent to adding the shunt admittances of the discontinuities.

See, for example, Montgomery, [2], p.71.

If we let these generalized admittances be

= y/(l - Y)'Il y 1 /(1- Y1 )l'o*'rn = y/(1 - yn),

then

1= 'l + •2 ' n

and y =/(l + n). We will assume that ni,... are independent

random complex variables, and hence, by the central limit theorem, we

can expect that the real and complex parts of q will be jointly

normally distributed. We then must find the distribution of 1I1, when

y = n/(1 + 1) and the distributlon of q is the bivariate normal,
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3. Distribution of the Admittances

Our procedure for finding the distribution of the overall retsection

coefficient is this: we are given n reflection coefficients

y1,Y2,...,yn, assumed to be independent random complex numbers. We first

convert reflection coefficients, Yk' to admittances, nk' according to

the relation nk = yk(1 - Yk). We then add the admittances, getting

= 1I + 2 + '".+ nn By the central limit theorem, n will be approx-

imately normally distributed in the complex plane. Then we convert 1

back to an overall reflection coefficient, y, according to the relation

y = L/(i + 0).

We assume that each reflection coefficient, Yk' has the form

iuk
Yk = cke I

where ck and uk are independent random variables, ck with some

distribution on the interval (0,1) and uk with some symmetric distri-

bution on the interval (0,2n). From these assumptions, it follows

(see Theorem 1, appendix) that the real and imaginary parts of are

uncorrelated. Thus the real and imaginary parts of q = I+ 2'"

are uncorrelated, and since they may be taken as jointly normal, they

will be independent, for independence and zero correlation are equivalent

for normal variates.

Thus if we write

S= x + iy = ql + o2 n
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we may take x and y to be independent normal random variables with

means and variances calculated from expression (2) in the appendix. In

particular, when we assume that each uk is uniformly distributed over

(0,2n), then we have

E(x) = E(y) = 0

2 2 1 2 c2
Ox = ay = 7 EE[ck/(i c .

4. The Distribution of In/(' + 0)I from that of ,

We have I = x + iy, where x and y are independent normal random

variables, and want the distribution of 1lY, where y = r/Cl + n).

Presumably, IYI takes values between 0 and 1, and for 0 < t < 1,

we note that IyI < t if and only if, in the complex plane, the distance

from I to the origin is less than t times the distance from n to

- 1 + oi. In terms of x and y, this condition may be put in the form

P[IYl < t =P p(x - t /2 l - t2)) + y2 < t/(l - t2)) J.

Thus the probability that IJy will be less than t is the bivariate

normal probability measure of an offset circle. The standard bivariate

normal probability measure, (c = a = 1), of a circle with center
x y

distance d from the origin and radius r, designated C(d,r),

C(d,r) = PE( + d) 2 + < )2 <r 2
]

is a well known function. It may be computed by the formula

C(d,r) = e- E F k(r
k=O
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where

x= d2/2 and, if IL r2/2,

2 - 2 k
Fk(r 1 - e-*- *e I e-" -11 e-l

Tables of C(d,r) are available from the author, [ 1 ], or from Rand, [5).

Our results may be summarized as follows:

If a transmission line has discontinuities with reflection coefficients

iuI iu 2  iun

ce= 1 y2 = C2e 2..,Yn = cne where the c's and u's are

independent, each ck with some distribution on the interval (0,1), and
0

each uk uniformly distributed on the interval (0,2n), then the resulting

reflection coefficient, y, related to Y1,...,yn b

Y Yl Y2 Yn
-Y - 1 Y 1 -Y 2  "* 1 -4 n

has magnitude with probability distribution

t2 t
(1) P[IYI < t] = CE , t •

O(l- t 2) O(l- t )

where

2 1 n 2 2
a 7 EE[c l- c k)

1

and C(d,r) is the standard normal probability measure of a circle with

radius r, center distance d from the origin.

Graphs of the distribution function and density function of jyl, for

a .02,.04,...,.26, are drawn in figure 1.

@0
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5. Determining E[c 2/( - c2

We have seen that the probability distribution of the magnitude
0

of the resultant reflection coefficient, on the assumption that the

phases of the component reflection coefficients are uniformly distributed,

is gi.ven by (1). It depends on a single parameter, a, related to the
iUk

individual reflection coefficients Yk =Cke by

~2 1 n[ 2 Ala =• E[c kil- c k)M.
1 k k

It is therefore important that we determine the expected value of

c2A, - c2) for each k. In most practical problems, c will be given

in terms of a tolerance, e.g., c = .10 + .04. How can we determine

E(c 2/(l - c 2) when all we know is that c is given in a form such as

c = .10 + .04? Fortunately, we can get good upper and lower bounds on

this expectation for two reasons: The function x 2(l - x 2) is convex,

and the range of the typical c is small. The bounds we want are as

follows: If c is given by c = co ± 6, where co is the expected value

of c, then no matter how c is distributed on the interval

C0 - 6 < C < c0 + 6, we have

2

2 1 0 --< <E(. ) < +
1 -c 0  - - c 1 - L -

where L co -6 is the lower, and U = c + 6 the upper, tolerance
0 0

value on c . In the example above, c = .10 + .04, we have

22 1 06 2 142

,O < E( c ' [---- +

1 - .10 2- -c 1 - .062 l - .142
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or
2

.0101 < E( c o2) < o0118.
1- c

Thus we have contained our unknown expected value in a rather small

interval.

6. a Examples

Example 1. 0 Suppose we have 8 discontinuities, each with VSWR rated

1.1 + .04. Conventional theory states that the worst mismatch will result

8in a VSWR of about (1.1) = 2.14, or a reflection coefficient with

magnitude (2.14 - 1)/(2.14 + 1) = .36. Figure 2 gives the actual

distribution of the resultant jly, it is clear that only very rarely

will Iny be anywhere near .36. To describe the possible variation of

tyn in probability terms, we first convert tolerances on each VSWR to

tolerances on the magnitude of the corresponding reflection coefficient.

If r is in the range 1.06 < r < 1.14 then c= ( - r)/(l + r) is in

the range .029 < c < .065, which we write as c = .048 + .018, taking

.048 as the expected value of c. Then we assume that each reflectioniuk
coefficient ek = cke is a random complex number with c and

independent, c with some distribution on .048 + .018 and )k uniform

on (0,20). We then need E(C2 Al - ck2 According to section 5, we

have upper and lower bounds:

82 2 .o 2 ,2 .2,a---- w.rc.Ri - c2)J < •{l _ .o3

1 - .0482 - 0 021 - 066

or

.0023 <_ E[IC2A, c2)j <026.k k]
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Thus if n = n 1 + n 2 +'"."+ nn' nk = Yk/[I - Yk)' then n = x + iy

has components that are (approximately) independent normal random

variables with zero means and common variance

02 1 2A 2 1•

=ck)l S½(8)(.o026) = .0104.

We take o = .1, and the magnitude of y, the resulting reflection

coefficient, has distribution

P1Yl < tJP[(x - t2/(l - t2))2 + y2 < (t/l - t2)2

or

P[l•l < ti Mo C~2/(l - t22,lot/(l - t2

Figure 2 gives the distribution and density function of jyl for
this example. It is clear that the resulting value of IjI is virtually

certain to be much better than the pessimistic value of .36 obtained by

multiplying the VSWR's - the probability that 1qyj < .21 is about .90,

and half the time IyI will be less than .12.

LO \

0.8 \

0.6-

0.4

0.2

0 0.1 0.3 OA 0.5 O. 0.7 0.16 0.9 1.0iiy.
0.ue4 itiuin n estfntono ¥,Eapei
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Example 2. Suppose we have 15 discontinuities, 11 with

c = .05 + .02 and 4 with c = .10 + .04. Also, suppose an additional,

final, discontinuity at the antenna has complex reflection coefficient
S

25uEi
known to be .5e" What can we say about total reflection losses in

the system? For c's in the range .05 + .02, we have

052 c2 1 032 + 072

1 - .052 1 - c 2 1 - .032 1 - .07 2

or
2

.0025 < E( c2 < .0029

and for c's in the range .10 + .04, we found, in section 5,

2
.oloi < E( _) <_ o0118.

1 - c

Thus the generalized admittance, 1 i + '12 + 15+ 15' the sum

of the random admittances of the 15 discontinuities, has the form

= x + iy, where x and y are independent, normal, zero means, common

variance

2 (11)(.5)(.0029) + 4(.5)(.0118) = .0396.

We thus take a = /.0397 ~ .2

To ' = x + iy we must add the generalized admittance of the last

discontinuity, which is .Se 25e & l -. 5e 25i), or, in rectangular

coordinates, - .191 +.651i.

Thus the generalized admittance of the entire 16 discontinuities is

T = x + .191 + (y + .651)i
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and if y = T/(1 + T) is the overall reflection coefficient,

P[IYt < ti = P[(x + .191 - t 2(l - t 2))2 + (y + .651)2 < (t/Cl - t 2)) 2

or

P[IyI < t] =p[(A + .191 - 2+(+.612<t)~
a ft o(- t) 2 aO - t2)

The last expression is the standard normal probability measure of a circle

of radius t/a(1 - t2),, center distance o-l[(.191 - t 2 ) + (.651)2/

* 1 -t 2

from the origin, i.e., with a = .2,

P[Ily < t] C(d,r)

with

r = 5t/Cl - t 2 ) d = 5[[.191 - t 2 /(l - t 2 )] 2 + (.651)211/2.

Figure 3 gives the distribution and density functions of IYl for

this example.

1.0/

0.2 /
/

0.4 00\

0.2 •

O0 0.1 0.2 0.3 0•4 0.5 0.6 0.7 0.61 0.9 1.0

Ity

Figure 3. Distribution and density of lyI, Example 2.
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APPENDIX

Theorem 1.

iu
Let y = ce be a complex random variable in polar form, where

c and u are independent random variables, and c has some distribution

in the interval (0,1).

If u is symmetrically distributed over the interval (0,2n), then the

real and imaginary parts of I = y/(l - y) are uncorrelated.

If we compute the real and imaginary parts of n directly, we have

2
S= y/(l - y) = x + iy = c cos U - U ic sin 2

1-L Coi-2c cos u+c

and it is not evident that x and y are uncorrelated. However, if we

write n = y/(l - y) = y + y 2 + 3 +... then

2 2(1) 1 (c Cos u+ cCos 2u +c3cos 3u +...)+i(c sin u+c sin 2u+c3sin 3u +..),

and we may take expectations term by term to get

E(x) = E(c)E(cos u) + E(c2 )E(cos 2u) + E(c 3 )E(cos 3u) +...

(2) E(y) = E(c)E(sin u) + E(c 2 )E(sin 2u) + E(c 3 )E(sin 3u) +...

E(xy) = ZZ E(cr+S)E(cos ru sin su).
rs

Now if u is symmetrically distributed over (0,2n) then

E(sin ra) = E(sin ru cos su) = 0. Hence E(y) = 0 and E(xy) = 0, so

that x and y are uncorrelated.
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Of particular interest is the case where u is uniformly distributed:

Theorem 2.

iu

If y = ce , where c and u are independent, c has some

distributions on the interval (0,1), and u is uniformly distributed

on the interval (0,2n), then the real and imaginary parts of

S= y/(l - y) = x + iy are uncorrelated, with expected values

E(x) E(y) = E(xy) = 0

and variances

E(x2) E(y 2 ) = .

1 - c

The proof of Theorem 1 applies, except that we must compute the

variances of x and y. Squaring and taking expected values of the series

expressions for x or y, the cross product terms are zero, and there

remains, since E(sin2 ru) = E(cos 2 ru) 1

E(x) = E(y) = [E(c2) + E(c4 E(c6) 6 ...

2

1c
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